processing Semantic data

Semantic data integration enables blending data from disparate sources by employing a data-centric architecture built upon an RDF model. The ability to easily import and harmonize heterogeneous data from multiple sources and interlink it as RDF statements into an RDF triplestore is essential for many knowledge management solutions.

Descriptive part

Ontology design

From these definitions we deduce the classes and subclasses in yellow, the object properties in blue and the data properties in green. The details of the practical work will exceptionally be in French to coincide with the Protege software.

Classes
  1. Le beau temps et le mauvais temps sont deux types de phénomènes
  2. La pluie et le brouillard sont des types de phénomènes de mauvais temps, l’ensoleillement est un type de phénomène de beau temps
  3. Les paramètres mesurables sont une classe de concept, ainsi que les instants et les observations. La classe concept n'est pas présente sur la capture, il s'agit d'un oubli et ne gène pas la suite du TP
  4. Une ville, un pays et un continent sont des types de lieux
Object & data properties
  1. Un phénomène est caractérisé par des paramètres mesurables 
  2. Un phénomène a une durée en minutes
  3. Un phénomène débute à un instant
  4. Un phénomène finit à un instant
  5. Un instant a un timestamp, de type  xsd :dateTimeStamp 
  6. Un phénomène a pour symptôme une observation
  7. Une observation météo mesure un paramètre mesurable
  8. Une observation météo a une valeur pour laquelle vous ne représenterez pas l’unité
  9. Une observation météo a pour localisation un lieu.
  10. Une observation météo a pour date un instant
  11. Un lieu peut être inclus dans un autre lieu ▶ est situé dans
  12. Un lieu peut inclure un autre lieu ▶ contient
  13. Un pays a pour capitale une ville

The second step is to populate this ontology with several individuals following certain rules. The details will not be present here but you can find them in my report. "Protege" incorporates a tool called hermit reasoner that allows you to make inferences about individuals. For example, if we create Paris as an untyped individual and France as a country, we can then create the triplet France :a pour capitale Paris. The reasoner then deduces that Paris is a city. This is a very simple example that shows how it works. It uses the established rules to deduce additional information.

Exploiting the ontology

The goal of this second part is to use the previously created ontology and to implement to implement functions that will be used by this ontology. We then use the properties defined in part 1 to represent some individuals of the ontology.

The code:
main functions

At first, the objective is to implement the IModelFunctions interface using the functions present in IConvenienceInterface. So we have five functions to to implement. Each function corresponds to a jUnit test that we must validate.

Technical part

This section describes the context of the subject, my accomplishments and a summary of the skills I have acquired.

Presentation

This subject took place during December and January. There are two practical works in addition to the lectures that allow to deepen the knowledge of semantic web. I worked in pair with Walid KHALED.

The only negative point noted for this subject is the fact that the two practical works are so far away from each other which requires extra time to adapt. This subject has been evaluated a report available below.

Observations

The practical works are well designed as well as the explanations given during the course which ensured a perfect understanding of the material.

I have few details to give about this subject because there are very few negative points to give and I was able to get a very good understanding.

It's an excellent complement to last year's semantic web course that allowed me to discover more about the exploitation of semantic data.

Skills  used

This subject involves the semantic web and object-oriented development courses of the last few years. These courses introduced the basics of semantic web and trained me to use the protege software which makes the work easier during the practical work.

Review

I am now able to design and understand a model for a semantic web application. I also know how to use a semantic database to enrich classical data.

Analytical Part

This section presents a comprehensive analysis of all the knowledge and skills acquired during this experiences

Skills matrix

Design and understand a model for an application

Know how to infer new knowledge from a knowledge base

Be able to enrich data with semantic meta-data

See related work

Click on the button below to download my report.